

pyrcmip

pyrcmip is a tool for validating and uploading results to RCMIP [http://rcmip.org].
The Reduced Complexity Model Intercomparison Project (RCMIP) is a project to evaluate reduced-complexity (also known as simple) climate models and compare them against CMIP coupled models.

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gl/rcmip%2Fpyrcmip/master?filepath=notebooks%2Fexample-model-pipeline]
License

pyrcmip is free software under a BSD 3-Clause License, see LICENSE [https://gitlab.com/rcmip/pyrcmip/blob/master/LICENSE].

If you make use of pyrcmip or any of the RCMIP project, please cite Nicholls et al., GMDD 2020 [1].

References

	1

	Z. R. J. Nicholls, M. Meinshausen, J. Lewis, R. Gieseke, D. Dommenget, K. Dorheim, C.-S. Fan, J. S. Fuglestvedt, T. Gasser, U. Golüke, P. Goodwin, E. Kriegler, N. J. Leach, D. Marchegiani, Y. Quilcaille, B. H. Samset, M. Sandstad, A. N. Shiklomanov, R. B. Skeie, C. J. Smith, K. Tanaka, J. Tsutsui, and Z. Xie. Reduced complexity model intercomparison project phase 1: protocol, results and initial observations. Geoscientific Model Development Discussions, 2020:1–33, 2020. URL: https://gmd.copernicus.org/preprints/gmd-2019-375/, doi:10.5194/gmd-2019-375 [https://doi.org/10.5194/gmd-2019-375].

Documentation

	Installation

	Submitting results
	Performing the experiments

	Preparing the submission

	Validating the submission

	Uploading the submission

	Development
	Contributing

	Getting setup

	Formatting

	Buiding the docs

	Releasing

	Why is there a Makefile in a pure Python repository?

	Why did we choose a BSD 2-Clause License?

API reference

	Assessed Ranges API

	Command-line interface
	rcmip

	Database API

	Errors API

	IO API

	Metric Calculations API

	Plotting API

	Stats API

	Validate API

Versions

	Changelog
	master

	v0.4.1 - 2020-09-14

	v0.4.0 - 2020-09-13

	v0.3.0 - 2020-09-02

	v0.2.1 - 2020-09-01

	v0.2.0 - 2020-08-17

	v0.1.1 - 2020-07-09

	v0.1.0 - 2020-07-09

Index

	Index

	Module Index

	Search Page

Installation

The easiest way to install pyrcmip is with pip [https://pypi.org/project/pip/].
At this stage pyrcmip only supports Python 3.6+.

if you're using a virtual environment, make sure you're in it
pip install pyrcmip

Submitting results

If you’re interested in submitting results to RCMIP then you’re in the right place.
Here we go through the process of preparing and submitting results to RCMIP.
If you have any issues with this guide, or feel it could be improved, please don’t hesitate to raise an issue in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues] or make a merge request [https://gitlab.com/rcmip/pyrcmip/-/merge_requests].

A set of Jupyter Notebooks for the running the RCMIP experiments and uploading the results using the Geoffroy et al. (2013) [https://journals.ametsoc.org/doi/full/10.1175/JCLI-D-12-00196.1] two-layer model, as implemented in openscm-twolayermodel [https://github.com/openscm/openscm-twolayermodel] are available in
notebooks/example-model-pipeline [https://gitlab.com/rcmip/pyrcmip/-/tree/master/notebooks/example-model-pipeline]. These notebooks can be launched directly using binder [https://mybinder.org/v2/gl/rcmip%2Fpyrcmip/master?filepath=notebooks%2Fexample-model-pipeline].
We would love to share more examples of running your models using the RCMIP protocol.

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gl/rcmip%2Fpyrcmip/master?filepath=notebooks%2Fexample-model-pipeline]

	Performing the experiments

	Preparing the submission

	Timeseries

	Differences from RCMIP Phase 1

	Model reported metrics

	Metadata

	Differences from RCMIP Phase 1

	Validating the submission

	Uploading the submission

Performing the experiments

The first step to submitting is performing the experiments.
Our protocol is currently available from the RCMIP website [https://rcmip.org], under the initial datasets header [https://www.rcmip.org/#h.p_7MDJE6a8SpvT].
Please follow the protocol as closely as possible.
If you have any questions about the protocol or how to follow it, please raise an issue in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues].

Preparing the submission

Having performed the experiments, next you need to prepare your submission.
Submission via pyrcmip is a largely automated process, hence looks a little different to how submission looked in RCMIP phase 1.

For submission via pyrcmip, you need three things:

	Timeseries to be submitted

	Model reported metrics

	Metadata about your submission

Timeseries

The first part of the submission is the timeseries.
These can be provided in one of three ways.

	As the your_data sheet in our submission protocol [https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip-data-submission-template.xlsx] (e.g. https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip_model_output_test.xlsx).

	As a standalone csv (or gzipped csv) of the same format as the your_data sheet in our submission protocol [https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip-data-submission-template.xlsx] (https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip_model_output_test.csv).

	As a standalone netCDF file in scmdata’s [https://github.com/openscm/scmdata] netCDF format (e.g. https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip_model_output_test.csv, further details on the format at https://github.com/openscm/scmdata/blob/v0.6.3/notebooks/netcdf.ipynb).

Differences from RCMIP Phase 1

For those who submitted to RCMIP Phase 1, please note the following two differences:

	we now ask for an extra column ensemble_member, which provides an index so we can distinguish different model configurations within a probabilistic ensemble

	the column headings have changed slightly (our readers should be able to handle the old style, but updating if you can would be much appreciated)

Model reported metrics

We also ask you to report some metrics which cannot be derived from any RCMIP experiments.
At this stage, the only such metric is Equilibrium Climate Sensitivity (none of our experiments are long enough to reach true equilibrium).
We ask that you submit a csv which documents the Equilibrium Climate Sensitivity of each ensemble_member provided in the timeseries part of the submission.
An example of such a csv is shown in https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip_model_reported_metrics_test.csv.

Metadata

The final part of the submission is metadata.
This simply provides metadata about your model which can be used as documentation.
This metadata can be provided in one of two ways:

	as a csv of the same format as https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip_model_metadata_test.csv

	by saving the meta_model sheet of our submission protocol [https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip-data-submission-template.xlsx] as a standalone csv (this should result in a csv like https://gitlab.com/rcmip/pyrcmip/-/tree/master/tests/data/rcmip-model-meta-test.csv)

Differences from RCMIP Phase 1

We have only made one change compared to RCMIP Phase 1:

	we have removed the ECS column from the meta_model sheet

Validating the submission

Once you have prepared your submission, you can then use RCMIP’s command-line interface to validate it.
This is done using the rcmip validate command.
For full details, please see the validate section in our Command-line interface documentation.
This command will validate your submission, highlighting any errors it finds and providing you with a green light otherwise.
If your submission does not pass validation, you will not be able to upload it in the next step.
If you have any questions or issues with validation, please raise an issue in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues].

Note

The validation and uploading process can take some time (and a lot of memory) especially with large ensembles.

If you are having
issues uploading large ensembles of results, split the input timeseries into smaller, more manageable chunks and pass all those
chunks to the validate or upload command. Each chunk will be processed independently.

Uploading the submission

Once your submission has been validated, you can then upload it.
This is done using the rcmip upload command.
For full details, please see the upload section in our Command-line interface documentation.
This command will validate (again, just in case) and then upload your submission (assuming the validation passed).
If you have any questions or issues with upload, please raise an issue in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues].

Development

If you’re interested in contributing to pyrcmip, we’d love to have you on board!
This section of the docs details how to get setup to contribute and how best to communicate.

	Contributing

	Getting setup

	Getting help

	Development tools

	Other tools

	Formatting

	Buiding the docs

	Gotchas

	Docstring style

	Releasing

	First step

	PyPI

	Push to repository

	Conda

	Why is there a Makefile in a pure Python repository?

	Why did we choose a BSD 2-Clause License?

Contributing

All contributions are welcome, some possible suggestions include:

	tutorials (or support questions which, once solved, result in a new tutorial :D)

	blog posts

	improving the documentation

	bug reports

	feature requests

	pull requests

Please report issues or discuss feature requests in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues].
If your issue is a feature request or a bug, please use the templates available, otherwise, simply open a normal issue :)

As a contributor, please follow a couple of conventions:

	Create issues in the pyrcmip issue tracker [https://gitlab.com/rcmip/pyrcmip/issues] for changes and enhancements, this ensures that everyone in the community has a chance to comment

	Be welcoming to newcomers and encourage diverse new contributors from all backgrounds: see the Python Community Code of Conduct [https://www.python.org/psf/codeofconduct/]

Getting setup

To get setup as a developer, we recommend the following steps (if any of these tools are unfamiliar, please see the resources we recommend in Development tools):

	Install conda and make

	Run make conda-environment, if that fails you can try doing it manually by reading the commands from the Makefile

	Make sure the tests pass by running make test, as above if that fails you can try doing it manually by reading the commands from the Makefile

Getting help

Whilst developing, unexpected things can go wrong (that’s why it’s called ‘developing’, if we knew what we were doing, it would already be ‘developed’).
Normally, the fastest way to solve an issue is to contact us via the issue tracker [https://gitlab.com/rcmip/pyrcmip/issues].
The other option is to debug yourself.
For this purpose, we provide a list of the tools we use during our development as starting points for your search to find what has gone wrong.

Development tools

This list of development tools is what we rely on to develop pyrcmip reliably and reproducibly.
It gives you a few starting points in case things do go inexplicably wrong and you want to work out why.
We include links with each of these tools to starting points that we think are useful, in case you want to learn more.

	Git [http://swcarpentry.github.io/git-novice/]

	Make [https://swcarpentry.github.io/make-novice/]

	
	Conda virtual environments [https://medium.freecodecamp.org/why-you-need-python-environments-and-how-to-manage-them-with-conda-85f155f4353c]
	
	note the common gotcha that source activate has now changed to conda activate

	we use conda instead of pure pip environments because they help us deal with Iris’ dependencies: if you want to learn more about pip and pip virtual environments, check out this introduction [https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/]

	
	Tests [https://semaphoreci.com/community/tutorials/testing-python-applications-with-pytest]
	
	we use a blend of pytest [https://docs.pytest.org/en/latest/] and the inbuilt Python testing capabilities for our tests so checkout what we’ve already done in tests to get a feel for how it works

	
	Continuous integration (CI) [https://about.gitlab.com/blog/2018/01/22/a-beginners-guide-to-continuous-integration/]
	
	we use GitLab CI [https://docs.gitlab.com/ee/ci/] for our CI but there are a number of good providers

	
	Jupyter Notebooks [https://medium.com/codingthesmartway-com-blog/getting-started-with-jupyter-notebook-for-python-4e7082bd5d46]
	
	we’d recommend simply installing jupyter (conda install jupyter) in your virtual environment

	Sphinx [http://www.sphinx-doc.org/en/master/]

Other tools

We also use some other tools which aren’t necessarily the most familiar.
Here we provide a list of these along with useful resources.

	
	Regular expressions [https://www.oreilly.com/ideas/an-introduction-to-regular-expressions]
	
	we use regex101.com to help us write and check our regular expressions, make sure the language is set to Python to make your life easy!

Formatting

To help us focus on what the code does, not how it looks, we use a couple of automatic formatting tools.
These automatically format the code for us and tell use where the errors are.
To use them, after setting yourself up (see Getting setup), simply run make black and make flake8.
Note that make black can only be run if you have committed all your work i.e. your working directory is ‘clean’.
This restriction is made to ensure that you don’t format code without being able to undo it, just in case something goes wrong.

Buiding the docs

After setting yourself up (see Getting setup), building the docs is as simple as running make docs (note, run make -B docs to force the docs to rebuild and ignore make when it says ‘… index.html is up to date’).
This will build the docs for you.
You can preview them by opening docs/build/html/index.html in a browser.

For documentation we use Sphinx [http://www.sphinx-doc.org/en/master/].
To get ourselves started with Sphinx, we started with this example [https://pythonhosted.org/an_example_pypi_project/sphinx.html] then used Sphinx’s getting started guide [http://www.sphinx-doc.org/en/master/usage/quickstart.html].

Gotchas

To get Sphinx to generate pdfs (rarely worth the hassle), you require Latexmk [https://mg.readthedocs.io/latexmk.html].
On a Mac this can be installed with sudo tlmgr install latexmk.
You will most likely also need to install some other packages (if you don’t have the full distribution).
You can check which package contains any missing files with tlmgr search --global --file [filename].
You can then install the packages with sudo tlmgr install [package].

Docstring style

For our docstrings we use numpy style docstrings.
For more information on these, here is the full guide [https://numpydoc.readthedocs.io/en/latest/format.html] and the quick reference we also use [https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html].

Releasing

The steps to release a new version of pyrcmip are shown below.
Please do all the steps below and all the steps for both release platforms.

First step

	Test installation with dependencies make test-install

	Update CHANGELOG.rst:

	add a header for the new version between master and the latest bullet point

	this should leave the section underneath the master header empty

	git add .

	git commit -m "Prepare for release of vX.Y.Z"

	git tag vX.Y.Z

	Test version updated as intended with make test-install

PyPI

If uploading to PyPI, do the following (otherwise skip these steps)

	make publish-on-testpypi

	Go to test PyPI [https://test.pypi.org/project/pyrcmip/] and check that the new release is as intended. If it isn’t, stop and debug.

	Test the install with make test-testpypi-install (this doesn’t test all the imports as most required packages are not on test PyPI).

Assuming test PyPI worked, now upload to the main repository

	make publish-on-pypi

	Go to pyrcmip’s PyPI [https://pypi.org/project/pyrcmip/] and check that the new release is as intended.

	Test the install with make test-pypi-install (a pip only install will throw warnings about Iris not being installed, that’s fine).

Push to repository

Finally, push the tags and the repository

	git push

	git push --tags

Conda

Note: Conda releases are not yet operational

	If you haven’t already, fork the pyrcmip conda feedstock [https://github.com/conda-forge/pyrcmip-feedstock]. In your fork, add the feedstock upstream with git remote add upstream https://github.com/conda-forge/pyrcmip-feedstock (upstream should now appear in the output of git remote -v)

	Update your fork’s master to the upstream master with:

	git checkout master

	git fetch upstream

	git reset --hard upstream/master

	Create a new branch in the feedstock for the version you want to bump to.

	Edit recipe/meta.yaml and update:

	version number in line 1 (don’t include the ‘v’ in the version tag)

	the build number to zero (you should only be here if releasing a new version)

	update sha256 in line 9 (you can get the sha from pyrcmip’s PyPI [https://pypi.org/project/pyrcmip/] by clicking on ‘Download files’ on the left and then clicking on ‘SHA256’ of the .tar.gz file to copy it to the clipboard)

	git add .

	git commit -m "Update to vX.Y.Z"

	git push

	Make a PR into the pyrcmip conda feedstock [https://github.com/conda-forge/pyrcmip-feedstock]

	If the PR passes (give it at least 10 minutes to run all the CI), merge

	Check https://anaconda.org/conda-forge/pyrcmip to double check that the version has increased (this can take a few minutes to update)

Why is there a Makefile in a pure Python repository?

Whilst it may not be standard practice, a Makefile is a simple way to automate general setup (environment setup in particular).
Hence we have one here which basically acts as a notes file for how to do all those little jobs which we often forget e.g. setting up environments, running tests (and making sure we’re in the right environment), building docs, setting up auxillary bits and pieces.

Why did we choose a BSD 2-Clause License?

We want to ensure that our code can be used and shared as easily as possible.
Whilst we love transparency, we didn’t want to force all future users to also comply with a stronger license such as AGPL.
Hence the choice we made.

We recommend Morin et al. 2012 [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002598] for more information for scientists about open-source software licenses.

Assessed Ranges API

Handling of assessed ranges

	
class pyrcmip.assessed_ranges.AssessedRanges(db)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for handling assessed ranges and performing operations with them.

For example, getting values for specific metrics and plotting results against
assessed ranges.

	
assessed_range_label = 'assessed range'

	String used for labelling assessed ranges (in plots, dataframes etc.)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
calculate_metric_from_results(metric, res_calc, custom_calculators=None)

	Calculate metric values from results

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to calculate results

	res_calc (scmdata.ScmRun) – Results to use for the calculation

	custom_calculators (tuple(pyrcmip.metric_calculations.base.Calculator)) – Custom calculators to use for calculating metrics which require a
custom calculation

	Returns

	pd.DataFrame containing the calculated metric values
alongside other relevant metadata

	Return type

	pd.DataFrame

	
check_norm_period_evaluation_period_against_data(norm_period, evaluation_period, data)

	Check the normalisation and evaluation periods against the data

	Parameters

	
	norm_period (None [https://docs.python.org/3/library/constants.html#None] or range [https://docs.python.org/3/library/stdtypes.html#range](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Normalisation period to check. If None, no check is performed.

	evaluation_period (None [https://docs.python.org/3/library/constants.html#None] or range [https://docs.python.org/3/library/stdtypes.html#range](int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int])) – Evaluation period to check. If None, no check is performed.

	data (scmdata.ScmRun) – Data to check

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The data is incompatible with the periods (e.g. the normalisation
 period begins before the data begins).

	
get_assessed_range_for_boxplot(metric, n_to_draw=20000)

	Get assessed range for a box plot

This converts the assessed range from IPCC language (very likely,
likely, central) into a distribution of values, based on
pyrcmip.stats.get_skewed_normal().

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to get assessed range distribution

	n_to_draw (int [https://docs.python.org/3/library/functions.html#int]) – Number of points to include in the returned distribution

	Returns

	pd.DataFrame with n_to_draw rows, each of which
contains a drawn value for metric. The returned values are put
in a column whose name is equal to the value of metric. We
also return a "unit" column and a "Source" column. The
"Source" column is filled with self.assessed_range_label.
Note that if the central value is nan, the entire distribution
will simply be filled with nan.

	Return type

	pd.DataFrame

	
get_col_for_metric(metric, col)

	Get value of column for a given metric (i.e. RCMIP name)

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric whose values we want to look up

	col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Column whose values we want (e.g. “RCMIP scenario”)

	Returns

	The value in the column

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – The metric could not be found in self.db

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – The column could not be found in self.db

	
get_col_for_metric_list(metric, col, delimeter=', ')

	Get value of column for a given metric (i.e. RCMIP name), split using a delimeter

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric whose values we want to look up

	col (str [https://docs.python.org/3/library/stdtypes.html#str]) – Column whose values we want (e.g. “RCMIP scenario”)

	delimeter (str [https://docs.python.org/3/library/stdtypes.html#str]) – Delimeter used to split col’s values

	Returns

	List of values, derived by splitting

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – The found values are not a string (i.e. cannot be split by a
 delimiter)

	
get_norm_period_evaluation_period(metric)

	Get normalisation and evaluation period for a given metric

	Parameters

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to get normalisation and evaluation periods

	Returns

	Normalisation period and evaluation period. Each return value is a
range of years which define the relevant period. If there is no
period supplied, None is returned. For example, if the
evaluation period is 1961-1990 and there is no reference period,
then None, range(1961, 1990 + 1) is returned.

	Return type

	norm_period, evaluation_period

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – A period could not be resolved because it is ambiguous i.e. it has
 nan for the start/end of the period while the other value is not
 nan.

	
get_results_summary_table_for_metric(metric, model_results)

	Get results summary table for a given metric

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to get the summary table

	model_results (pd.DataFrame) – pd.DataFrame containing the model results. It must have at
least the following columns: "climate_model", "value".

	Returns

	pd.DataFrame containing a summary of the results. The
percentage difference is calculated as
(model_value - assessed_value) / np.abs(assessed_value) * 100.

	Return type

	pd.DataFrame

	
get_variables_regions_scenarios_for_metric(metric, single_value=True)

	Get variables, regions and scenarios required to calculate a given metric

	Parameters

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to get values

	Returns

	Dictionary containing required variables, regions and scenarios

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
head(n=5)

	Get head of self.db

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows to return

	Returns

	Head of self.db

	Return type

	pd.DataFrame

	
metric_column = 'RCMIP name'

	Name of the column which holds the names of the metrics being assessed

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
plot_against_results(results_database, climate_models=['*'], custom_calculators=None, palette=None)

	Calculate metric values from results, compare and plot against assessed ranges

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric for which to calculate results

	results_database (pyrcmip.database.DataBase) – Database from which to load results

	climate_models (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Climate models to calculate results for

	custom_calculators (tuple(pyrcmip.metric_calculations.base.Calculator)) – Custom calculators to use for calculating metrics which require a
custom calculation

	palette (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colours to use for the different climate models and assessed
ranges when plotting

	Returns

	pd.DataFrame containing a dataframe based on concatenating
the results from calling
get_results_summary_table_for_metric() for each metric.

	Return type

	pd.DataFrame

	
plot_metric_and_results(metric, model_results, axes=None, palette=None)

	Plot our parameterisation of the metric’s distribution and the model results

This produces a two-panel plot, the top panel has the distributions,
the bottom panel has box and whisker plots (with the boxes and
whiskers adjusted to match the IPCC calibrated likelihood language).

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric to plot

	model_results (pd.DataFrame) – pd.DataFrame with the model results. Should be of the form
returned by calculate_metric_from_results().

	axes ((matplotlib.axes.SubplotBase, matplotlib.axes.SubplotBase)) – Axes on which to make the plots. Must be two-panels.

	palette (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colours to use for the different climate models and assessed ranges

	Returns

	Axes on which the plot was made

	Return type

	(matplotlib.axes.SubplotBase, matplotlib.axes.SubplotBase)

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – axes doesn’t have a length equal to two

	
plot_metric_and_results_box_only(metric, model_results, ax=None, palette=None)

	Plot box and whisker plots of the metric’s distribution and the model results

The box and whisker plots have the boxes and whiskers adjusted to
match the IPCC calibrated likelihood language).

	Parameters

	
	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric to plot

	model_results (pd.DataFrame) – pd.DataFrame with the model results. Should be of the form
returned by calculate_metric_from_results().

	axes (matplotlib.axes.SubplotBase) – Axis on which to make the plot

	palette (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colours to use for the different climate models and assessed ranges

	Returns

	Axes on which the plot was made

	Return type

	matplotlib.axes.SubplotBase

	
plot_model_reported_against_assessed_ranges(model_reported, palette=None)

	Compare and plot model reported results against assessed ranges

	Parameters

	
	model_reported (pd.DataFrame) – pd.DataFrame of the same format as the result of
calculate_metric_from_results()

	palette (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – Colours to use for the different climate models and assessed
ranges when plotting

	Returns

	pd.DataFrame containing a dataframe based on concatenating
the results from calling
get_results_summary_table_for_metric() for each metric

	Return type

	pd.DataFrame

	
tail(n=5)

	Get tail of self.db

	Parameters

	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of rows to return

	Returns

	Tail of self.db

	Return type

	pd.DataFrame

Command-line interface

rcmip

Command-line interface for pyrcmip

rcmip [OPTIONS] COMMAND [ARGS]...

Options

	
--log-level <log_level>

	
	Options

	DEBUG|INFO|WARNING|ERROR|EXCEPTION|CRITICAL

download

Download submitted files

rcmip download [OPTIONS] OUTDIR

Options

	
--token <token>

	Required Authentication token. Contact zebedee.nicholls@climate-energy-college.org for a token

	
--bucket <bucket>

	

	
--model <model>

	Required

	
--version <version>

	Required Version of the data that was uploaded. Must be a valid semver version string (https://semver.org/). For example 2.0.0

Arguments

	
OUTDIR

	Required argument

upload

Validate and upload data to RCMIP’s S3 bucket.

All the files for a given version have to be uploaded together.

One or more TIMESERIES files in which the timeseries output is stored. These should be
CSV or NetCDF files conforming to the format expected by scmdata. Multiple
timeseries inputs can be specified, but care must be taken to ensure that all of
the individual timeseries have unique metadata. Each timeseries file will be validated and
uploaded independently.

MODEL_REPORTED is the CSV file in which the model reported metrics are stored.

METADATA is the CSV file in which the metadata output is stored.

rcmip upload [OPTIONS] TIMESERIES... MODEL_REPORTED METADATA

Options

	
--token <token>

	Required Authentication token. Contact zebedee.nicholls@climate-energy-college.org for a token

	
--bucket <bucket>

	

	
--model <model>

	Required

	
--version <version>

	Required Version of the data being uploaded. Must be a valid semver version string (https://semver.org/). For example 2.0.0

Arguments

	
TIMESERIES

	Required argument(s)

	
MODEL_REPORTED

	Required argument

	
METADATA

	Required argument

validate

Validate submission input

Three different types of input data are required for validation, namely:

One or more TIMESERIES files in which the timeseries output is stored. These should be
CSV or NetCDF files conforming to the format expected by scmdata. Multiple
timeseries inputs can be specified, but care must be taken to ensure that all of
the individual timeseries have unique metadata.

MODEL_REPORTED is the CSV file in which the model reported metrics are stored.

METADATA is the CSV file in which the metadata output is stored.

rcmip validate [OPTIONS] TIMESERIES... MODEL_REPORTED METADATA

Arguments

	
TIMESERIES

	Required argument(s)

	
MODEL_REPORTED

	Required argument

	
METADATA

	Required argument

Database API

Database of results handling

	
class pyrcmip.database.Database(root_dir)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

On-disk database handler for outputs from SCMs

	
get_out_filepath(climate_model, variable, region, scenario, ensemble_member=None)

	Get filepath in which data has been saved

The filepath is the root directory joined with the other information provided. The filepath
is also cleaned to remove spaces and special characters.

	Parameters

	
	climate_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Climate model to retrieve data for

	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Variable to retrieve data for

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – Region to retrieve data for

	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scenario to retrieve data for

	ensemble_member (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Ensemble member to retrieve data for

	Returns

	Path in which to save the data. If ensemble_member is None then it is not
included in the filename.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
load_data(climate_model, variable, region, scenario)

	Load data from the database

	Parameters

	
	climate_model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Climate model data to load

	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – Variable to load

	region (str [https://docs.python.org/3/library/stdtypes.html#str]) – Region to load

	scenario (str [https://docs.python.org/3/library/stdtypes.html#str]) – Scenario to load

	Returns

	Loaded data

	Return type

	obj: scmdata.ScmRun

	
load_model_reported()

	Load all model reported results

	Returns

	All model reported results

	Return type

	pd.DataFrame

	
load_summary_tables()

	Load all summary tables

	Returns

	All summary tables

	Return type

	pd.DataFrame

	
save_condensed_file(scmrun)

	Save results which have multiple ensemble members

	Parameters

	scmrun (scmdata.ScmRun) – Results to save in the database

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – ensemble_member is not included in scmrun’s metadata

	
save_model_reported(res, key='all')

	Save model reported data into the database

	Parameters

	
	res (pd.DataFrame) – Model reported results to save. Should be the same format as the
result of
pyrcmip.assessed_ranges.AssessedRanges.calculate_metric_from_results().

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier to use in the filename

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – The columns of res are not as expected (i.e.
 {"value", "ensemble_member", "RCMIP name", "unit", "climate_model"})
 or more than one climate model is included in res.

	
save_summary_table(res, file_id)

	Save summary table

	Parameters

	
	res (pd.DataFrame) – Summary table to save

	file_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifier to use in the filename

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – Columns of res are not as expected (i.e. not equal to
 {"assessed_range_label", "assessed_range_value", "climate_model", "climate_model_value", "metric", "percentage_difference", "unit"})

	
save_to_database(scmrun)

	Save a set of results to the database

The results are saved with one file for each
["climate_model", "variable", "region", "scenario", "ensemble_member"]
combination.

	Parameters

	scmrun (scmdata.ScmRun) – Results to save

Errors API

Custom errors defined within pyrcmip

	
exception pyrcmip.errors.NoDataForMetricError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

No data available to calculate the given metric

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

	
exception pyrcmip.errors.ProtocolConsistencyError

	Bases: ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

Inconsistency between input data and the RCMIP protocol

	
with_traceback()

	Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.

IO API

Input and output handling

	
pyrcmip.io.ensure_dir_exists(fp)

	Ensure directory exists

	Parameters

	fp (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filepath of which to ensure the directory exists

	
pyrcmip.io.read_results_submission(results)

	Read results submission

	Parameters

	results (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str) – Files to read in. All files to be read should be formatted as csv or
xlsx files following the formatting defined in the template
spreadsheet.

	Returns

	Results read in from the submission(s)

	Return type

	scmdata.ScmRun

	
pyrcmip.io.read_submission_model_metadata(fp)

	Read the model metadata component of a submission

	Parameters

	fp (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filepath to read

	Returns

	

	Return type

	pd.DataFrame

	
pyrcmip.io.read_submission_model_reported(fp)

	Read the model reported component of a submission

	Parameters

	fp (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filepath to read

	Returns

	

	Return type

	pd.DataFrame

	
pyrcmip.io.temporary_file_to_upload(df, max_size=1024, compress=False)

	Create a gzipped temporary serialized version of a file to upload

Attempts to keep the file in memory until it exceeds max_size. The file is then stored on-disk
and cleaned up at the end of the context.

The temporary location can be overriden using the TMPDIR environment variable as per
https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir

	Parameters

	
	df (scmdata.ScmRun or pd.DataFrame) – Run to store

	max_size (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – Max size in MB before file is temporarily streamed to disk. Defaults to 1GB

	Returns

	Open file object ready to be streamed

	Return type

	tempfile.SpooledTemporaryFile [https://docs.python.org/3/library/tempfile.html#tempfile.SpooledTemporaryFile]

Metric Calculations API

Metric calculations used in RCMIP

	
class pyrcmip.metric_calculations.CalculatorTCR

	Bases: pyrcmip.metric_calculations.base.Calculator

Calculator of the transient climate response (TCR)

	
classmethod calculate_metric(assessed_ranges, res_calc, norm_period, evaluation_period, unit)

	Calculate metric

	Parameters

	
	assessed_ranges (pyrcmip.assessed_ranges.AssessedRanges) – Assessed ranges instance

	res_calc (scmdata.ScmRun) – Results from which the metric is to be derived

	norm_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use for normalising the data before calculating the metric

	evaluation_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use when evaluating the metric

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit in which the metric should be returned

	Returns

	Metric values with other relevant model metadata

	Return type

	pd.DataFrame

	Raises

	
	NoDataForMetricError – No data is available to calculate the given metric

	DimensionalityError – The units of the data cannot be converted to the desired units or
 the units of the data are incompatible with the metric calculation

	
classmethod can_calculate_metric(metric)

	Decide whether the input metric can be calculated or not

	Parameters

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric to check

	Returns

	If True, the metric can be calculated. Otherwise, it cannot.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class pyrcmip.metric_calculations.CalculatorTCRE

	Bases: pyrcmip.metric_calculations.base.Calculator

Calculator of the transient climate response to emissions (TCRE)

	
classmethod calculate_metric(assessed_ranges, res_calc, norm_period, evaluation_period, unit)

	Calculate metric

	Parameters

	
	assessed_ranges (pyrcmip.assessed_ranges.AssessedRanges) – Assessed ranges instance

	res_calc (scmdata.ScmRun) – Results from which the metric is to be derived

	norm_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use for normalising the data before calculating the metric

	evaluation_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use when evaluating the metric

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit in which the metric should be returned

	Returns

	Metric values with other relevant model metadata

	Return type

	pd.DataFrame

	Raises

	
	NoDataForMetricError – No data is available to calculate the given metric

	DimensionalityError – The units of the data cannot be converted to the desired units or
 the units of the data are incompatible with the metric calculation

	
classmethod can_calculate_metric(metric)

	Decide whether the input metric can be calculated or not

	Parameters

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric to check

	Returns

	If True, the metric can be calculated. Otherwise, it cannot.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Base class for metric calculations

	
class pyrcmip.metric_calculations.base.Calculator

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Base class for metric calculations

	
classmethod calculate_metric(assessed_ranges, res_calc, norm_period, evaluation_period, unit)

	Calculate metric

	Parameters

	
	assessed_ranges (pyrcmip.assessed_ranges.AssessedRanges) – Assessed ranges instance

	res_calc (scmdata.ScmRun) – Results from which the metric is to be derived

	norm_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use for normalising the data before calculating the metric

	evaluation_period (list [https://docs.python.org/3/library/stdtypes.html#list]) – Years to use when evaluating the metric

	unit (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unit in which the metric should be returned

	Returns

	Metric values with other relevant model metadata

	Return type

	pd.DataFrame

	Raises

	
	NoDataForMetricError – No data is available to calculate the given metric

	DimensionalityError – The units of the data cannot be converted to the desired units or
 the units of the data are incompatible with the metric calculation

	
classmethod can_calculate_metric(metric)

	Decide whether the input metric can be calculated or not

	Parameters

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Metric to check

	Returns

	If True, the metric can be calculated. Otherwise, it cannot.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Plotting API

Helpers and config for plotting

	
pyrcmip.plotting.CLIMATE_MODEL_PALETTE = {'AR6 Prelim. FGD': 'tab:gray', 'HadCRUT.5.0.0.0': 'tab:gray', 'HadCRUT.5.0.0.0 (GMST)': 'tab:gray', 'MAGICC7': 'tab:orange', 'Raw CMIP6 multi-model ensemble': 'tab:green', 'assessed range': 'tab:blue', 'two_layer': 'tab:pink', 'von Shuckmann et al. 2020': 'tab:purple'}

	Colour palette used for plots coloured by climate model

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
pyrcmip.plotting.CMIP6_NAME = 'Raw CMIP6 multi-model ensemble'

	String used to represent the CMIP6 multi-model ensemble in plots

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pyrcmip.plotting.SCENARIO_PALETTE = {'historical': 'tab:gray', 'ssp119': array([0.1171875, 0.5859375, 0.515625]), 'ssp126': array([0.11328125, 0.19921875, 0.328125]), 'ssp245': array([0.9140625 , 0.86328125, 0.23828125]), 'ssp370': array([0.9453125 , 0.06640625, 0.06640625]), 'ssp370-lowNTCF': array([0.9453125 , 0.06640625, 0.06640625]), 'ssp434': array([0.38671875, 0.73828125, 0.89453125]), 'ssp460': array([0.90625 , 0.921875 , 0.19140625]), 'ssp534-over': array([0.6015625 , 0.42578125, 0.78515625]), 'ssp585': array([0.515625 , 0.04296875, 0.1328125])}

	Colour palette used for plots coloured by scenario

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Stats API

Statistics required for RCMIP analysis

	
pyrcmip.stats.get_skewed_normal(median, lower, upper, conf, input_data)

	Get skewed normal distribution matching the inputs

	Parameters

	
	median (float [https://docs.python.org/3/library/functions.html#float]) – Median of the output distribution

	lower (float [https://docs.python.org/3/library/functions.html#float]) – Lower bound of the confidence interval

	upper (float [https://docs.python.org/3/library/functions.html#float]) – Upper bound of the confidence interval

	conf (float [https://docs.python.org/3/library/functions.html#float]) – Confidence associated with the interval [lower, upper] e.g. 0.66
would mean that [lower, upper] defines the 66% confidence range

	input_data (np.ndarray) – Points from the derived distribution to return. For each point, Y, in
input_data, we determine the value at which a cumulative
probability of Y is achieved. As a result, all values in
input_data must be in the range [0, 1]. Hence if you want a random
sample from the derived skewed normal, simply make input_data
equal to a random sample of the uniform distribution [0, 1]

	Returns

	Points sampled from the derived skewed normal distribution based on
input_data

	Return type

	np.ndarray

Validate API

Validation of RCMIP submissions

	
pyrcmip.validate.convert_units_to_rcmip_units(submission, protocol_variables)

	Convert units to RCMIP units

	Parameters

	
	submission (scmdata.ScmRun) – Submission to convert

	protocol_variables (pd.DataFrame) – Variables and units as defined by the RCMIP protocol

	Returns

	Submission with units converted to RCMIP units

	Return type

	scmdata.ScmRun

	Raises

	ProtocolConsistencyError – Units could not be converted to RCMIP units

	
pyrcmip.validate.validate_regions(regions_to_check, protocol_regions)

	Validate regions against regions in the RCMIP protocol

	Parameters

	
	regions_to_check (list-like) – Regions to check

	protocol_regions (list-like) – Regions in the RCMIP protocol

	Raises

	ProtocolConsistencyError – regions_to_check contains regions not included in protocol_regions

	
pyrcmip.validate.validate_scenarios(scenarios_to_check, protocol_scenarios)

	Validate scenarios against scenarios in the RCMIP protocol

	Parameters

	
	scenarios_to_check (list-like) – Scenarios to check

	protocol_scenarios (list-like) – Scenarios in the RCMIP protocol

	Raises

	ProtocolConsistencyError – scenarios_to_check contains scenarios not included in protocol_scenarios

	
pyrcmip.validate.validate_submission(submission, protocol=None)

	Validate that an RCMIP submission complies with the required data format

	Parameters

	
	submission (scmdata.ScmRun) – Data to validate

	protocol (str [https://docs.python.org/3/library/stdtypes.html#str]) – Data file containing the RCMIP protocol against which to validate the
data. If None, the submission template will be loaded from
pyrcmip/data/rcmip-data-submission-template-v4-0-0.xlsx.

	Returns

	Input data, converted to match RCMIP units

	Return type

	scmdata.ScmRun

	Raises

	ProtocolConsistencyError – The data is not consistent with the protocol

	
pyrcmip.validate.validate_submission_bundle(timeseries, model_reported, metadata, protocol=None)

	Validate that an RCMIP submission bundle complies with the required formats

	Parameters

	
	timeseries (scmdata.ScmRun) – Timeseries to validate

	model_reported (pd.DataFrame) – Model reported metrics

	metadata (pd.DataFrame) – Model metadata

	protocol (str [https://docs.python.org/3/library/stdtypes.html#str]) – Data file containing the RCMIP protocol against which to validate the
timeseries. If None, the submission template will be loaded from
pyrcmip/data/rcmip-data-submission-template-v4-0-0.xlsx.

	Returns

	Validated timeseries, model reported metrics and model metadata

	Return type

	(scmdata.ScmRun, pd.DataFrame, pd.DataFrame)

	Raises

	
	ProtocolConsistencyError – The submission bundle is not consistent with the RCMIP protocol

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – A value for climate_model is found in timeseries or model_reported
 but isn’t found in the climate_model column of metadata.

	
pyrcmip.validate.validate_submission_model_meta(inp)

	Validate a submission’s metadata

	Parameters

	inp (pd.DataFrame) – Metadata submission to validate

	Returns

	Validated metadata submission

	Return type

	pd.DataFrame

	Raises

	ProtocolConsistencyError – The columns of res are not as expected (i.e.
 {"climate_model", "climate_model_name", "climate_model_version", "climate_model_configuration_label", "climate_model_configuration_description", "project", "name_of_person", "literature_reference"}).

	
pyrcmip.validate.validate_submission_model_reported_metrics(inp)

	Validate a submission of model reported metrics

	Parameters

	inp (pd.DataFrame) – Input to validate

	Returns

	Validated input

	Return type

	pd.DataFrame

	Raises

	ProtocolConsistencyError – The columns of res are not as expected (i.e.
 {"value", "ensemble_member", "RCMIP name", "unit", "climate_model"}),
 more than one climate model is included in res, the ensemble_member
 column is not integers, an unrecognised metric is provided or the provided
 unit is not compatible with RCMIP.

	
pyrcmip.validate.validate_variables(vars_to_check, protocol_variables)

	Validate variables against variables in the RCMIP protocol

	Parameters

	
	vars_to_check (list-like) – Variables to check

	protocol_variables (list-like) – Variables in the RCMIP protocol

	Raises

	ProtocolConsistencyError – vars_to_check contains variables not included in protocol_variables

Changelog

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/], and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].

The changes listed in this file are categorised as follows:

	Added: new features

	Changed: changes in existing functionality

	Deprecated: soon-to-be removed features

	Removed: now removed features

	Fixed: any bug fixes

	Security: in case of vulnerabilities.

master

v0.4.1 - 2020-09-14

Fixed

	(!25 [https://gitlab.com/rcmip/pyrcmip/merge_requests/25]) Usage of old seaborn API in plotting and broken unit check

v0.4.0 - 2020-09-13

Added

	(!23 [https://gitlab.com/rcmip/pyrcmip/merge_requests/23]) Documentation and tests for pyrcmip.assessed_ranges and pyrcmip.metric_calculations

	(!22 [https://gitlab.com/rcmip/pyrcmip/merge_requests/22]) Add support for downloading submitted data

Changed

	(!23 [https://gitlab.com/rcmip/pyrcmip/merge_requests/23]) pyrcmip.database.Database.load_data() now requires a climate_model argument

	(!23 [https://gitlab.com/rcmip/pyrcmip/merge_requests/23]) pyrcmip.database.Database.save_summary_table() now expects an "RCMIP name" column, rather than "metric"

	(!23 [https://gitlab.com/rcmip/pyrcmip/merge_requests/23]) Metric calculations now use the pyrcmip.metric_calculations.base.Calculator

	(!24 [https://gitlab.com/rcmip/pyrcmip/merge_requests/24]) Pin test dependency moto==1.3.14

	(!21 [https://gitlab.com/rcmip/pyrcmip/merge_requests/21]) Timeseries submissions must include an ensemble_member column

Removed

	(!23 [https://gitlab.com/rcmip/pyrcmip/merge_requests/23]) pyrcmip.database.time_mean()

v0.3.0 - 2020-09-02

Added

	(!19 [https://gitlab.com/rcmip/pyrcmip/merge_requests/19]) Clearer error message if the timeseries submission doesn’t contain climate_model or unit metadata

	(!17 [https://gitlab.com/rcmip/pyrcmip/merge_requests/17]) Update create-token script to allow for rotating of tokens

Changed

	(!20 [https://gitlab.com/rcmip/pyrcmip/merge_requests/20]) Each input timeseries is now individually validated and uploaded when using the cli

v0.2.1 - 2020-09-01

Added

	(!18 [https://gitlab.com/rcmip/pyrcmip/merge_requests/18]) Clarification that pyrcmip only supports Python 3.6+

	(!18 [https://gitlab.com/rcmip/pyrcmip/merge_requests/18]) Add support from submission from gzipped csv

	(!16 [https://gitlab.com/rcmip/pyrcmip/merge_requests/16]) Add the ability to specify multiple timeseries files via the CLI. Closes (#3 [https://gitlab.com/rcmip/pyrcmip/issues/3])

v0.2.0 - 2020-08-17

Added

	(!14 [https://gitlab.com/rcmip/pyrcmip/merge_requests/14]) Check if the templates have changed during CI

	(!12 [https://gitlab.com/rcmip/pyrcmip/merge_requests/12]) Add readthedocs configuration

	(!10 [https://gitlab.com/rcmip/pyrcmip/merge_requests/10]) Documentation of submission process

	(!6 [https://gitlab.com/rcmip/pyrcmip/merge_requests/6]) Skeleton of data processing, including illustrative model submission and processing pipeline

	(!5 [https://gitlab.com/rcmip/pyrcmip/merge_requests/5]) Basic docs

Changed

	(!13 [https://gitlab.com/rcmip/pyrcmip/merge_requests/13]) Fix broken documentation on readthedocs

	(!8 [https://gitlab.com/rcmip/pyrcmip/merge_requests/8]) Upload data, metadata and model reported values together

	(!7 [https://gitlab.com/rcmip/pyrcmip/merge_requests/7]) Require validation before uploading

	(!6 [https://gitlab.com/rcmip/pyrcmip/merge_requests/6]) Submissions now require three parts: timeseries, model reported and metadata rather than only just one

	(!4 [https://gitlab.com/rcmip/pyrcmip/merge_requests/4]) Require scmdata >= 0.6.1

v0.1.1 - 2020-07-09

Changed

	Fixed readme

v0.1.0 - 2020-07-09

Added

	CLI framework

	Basic checks

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyrcmip	

 	
 	
 pyrcmip.assessed_ranges	

 	
 	
 pyrcmip.database	

 	
 	
 pyrcmip.errors	

 	
 	
 pyrcmip.io	

 	
 	
 pyrcmip.metric_calculations	

 	
 	
 pyrcmip.metric_calculations.base	

 	
 	
 pyrcmip.plotting	

 	
 	
 pyrcmip.stats	

 	
 	
 pyrcmip.validate	

Index

 Symbols
 | A
 | C
 | D
 | E
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	
 	
 --bucket <bucket>

 	rcmip-download command line option

 	rcmip-upload command line option

 	
 --log-level <log_level>

 	rcmip command line option

 	
 --model <model>

 	rcmip-download command line option

 	rcmip-upload command line option

 	
 	
 --token <token>

 	rcmip-download command line option

 	rcmip-upload command line option

 	
 --version <version>

 	rcmip-download command line option

 	rcmip-upload command line option

A

 	
 	assessed_range_label (pyrcmip.assessed_ranges.AssessedRanges attribute)

 	
 	AssessedRanges (class in pyrcmip.assessed_ranges)

C

 	
 	calculate_metric() (pyrcmip.metric_calculations.base.Calculator class method)

 	(pyrcmip.metric_calculations.CalculatorTCR class method)

 	(pyrcmip.metric_calculations.CalculatorTCRE class method)

 	calculate_metric_from_results() (pyrcmip.assessed_ranges.AssessedRanges method)

 	Calculator (class in pyrcmip.metric_calculations.base)

 	CalculatorTCR (class in pyrcmip.metric_calculations)

 	CalculatorTCRE (class in pyrcmip.metric_calculations)

 	
 	can_calculate_metric() (pyrcmip.metric_calculations.base.Calculator class method)

 	(pyrcmip.metric_calculations.CalculatorTCR class method)

 	(pyrcmip.metric_calculations.CalculatorTCRE class method)

 	check_norm_period_evaluation_period_against_data() (pyrcmip.assessed_ranges.AssessedRanges method)

 	CLIMATE_MODEL_PALETTE (in module pyrcmip.plotting)

 	CMIP6_NAME (in module pyrcmip.plotting)

 	convert_units_to_rcmip_units() (in module pyrcmip.validate)

D

 	
 	Database (class in pyrcmip.database)

E

 	
 	ensure_dir_exists() (in module pyrcmip.io)

G

 	
 	get_assessed_range_for_boxplot() (pyrcmip.assessed_ranges.AssessedRanges method)

 	get_col_for_metric() (pyrcmip.assessed_ranges.AssessedRanges method)

 	get_col_for_metric_list() (pyrcmip.assessed_ranges.AssessedRanges method)

 	get_norm_period_evaluation_period() (pyrcmip.assessed_ranges.AssessedRanges method)

 	
 	get_out_filepath() (pyrcmip.database.Database method)

 	get_results_summary_table_for_metric() (pyrcmip.assessed_ranges.AssessedRanges method)

 	get_skewed_normal() (in module pyrcmip.stats)

 	get_variables_regions_scenarios_for_metric() (pyrcmip.assessed_ranges.AssessedRanges method)

H

 	
 	head() (pyrcmip.assessed_ranges.AssessedRanges method)

L

 	
 	load_data() (pyrcmip.database.Database method)

 	
 	load_model_reported() (pyrcmip.database.Database method)

 	load_summary_tables() (pyrcmip.database.Database method)

M

 	
 	
 METADATA

 	rcmip-upload command line option

 	rcmip-validate command line option

 	
 	metric_column (pyrcmip.assessed_ranges.AssessedRanges attribute)

 	
 MODEL_REPORTED

 	rcmip-upload command line option

 	rcmip-validate command line option

N

 	
 	NoDataForMetricError

O

 	
 	
 OUTDIR

 	rcmip-download command line option

P

 	
 	plot_against_results() (pyrcmip.assessed_ranges.AssessedRanges method)

 	plot_metric_and_results() (pyrcmip.assessed_ranges.AssessedRanges method)

 	plot_metric_and_results_box_only() (pyrcmip.assessed_ranges.AssessedRanges method)

 	plot_model_reported_against_assessed_ranges() (pyrcmip.assessed_ranges.AssessedRanges method)

 	ProtocolConsistencyError

 	pyrcmip.assessed_ranges (module)

 	pyrcmip.database (module)

 	
 	pyrcmip.errors (module)

 	pyrcmip.io (module)

 	pyrcmip.metric_calculations (module)

 	pyrcmip.metric_calculations.base (module)

 	pyrcmip.plotting (module)

 	pyrcmip.stats (module)

 	pyrcmip.validate (module)

R

 	
 	
 rcmip command line option

 	--log-level <log_level>

 	
 rcmip-download command line option

 	--bucket <bucket>

 	--model <model>

 	--token <token>

 	--version <version>

 	OUTDIR

 	
 rcmip-upload command line option

 	--bucket <bucket>

 	--model <model>

 	--token <token>

 	--version <version>

 	METADATA

 	MODEL_REPORTED

 	TIMESERIES

 	
 	
 rcmip-validate command line option

 	METADATA

 	MODEL_REPORTED

 	TIMESERIES

 	read_results_submission() (in module pyrcmip.io)

 	read_submission_model_metadata() (in module pyrcmip.io)

 	read_submission_model_reported() (in module pyrcmip.io)

S

 	
 	save_condensed_file() (pyrcmip.database.Database method)

 	save_model_reported() (pyrcmip.database.Database method)

 	
 	save_summary_table() (pyrcmip.database.Database method)

 	save_to_database() (pyrcmip.database.Database method)

 	SCENARIO_PALETTE (in module pyrcmip.plotting)

T

 	
 	tail() (pyrcmip.assessed_ranges.AssessedRanges method)

 	temporary_file_to_upload() (in module pyrcmip.io)

 	
 	
 TIMESERIES

 	rcmip-upload command line option

 	rcmip-validate command line option

V

 	
 	validate_regions() (in module pyrcmip.validate)

 	validate_scenarios() (in module pyrcmip.validate)

 	validate_submission() (in module pyrcmip.validate)

 	
 	validate_submission_bundle() (in module pyrcmip.validate)

 	validate_submission_model_meta() (in module pyrcmip.validate)

 	validate_submission_model_reported_metrics() (in module pyrcmip.validate)

 	validate_variables() (in module pyrcmip.validate)

W

 	
 	with_traceback() (pyrcmip.errors.NoDataForMetricError method)

 	(pyrcmip.errors.ProtocolConsistencyError method)

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 pyrcmip

 		
 Installation

 		
 Submitting results

 		
 Performing the experiments

 		
 Preparing the submission

 		
 Timeseries

 		
 Model reported metrics

 		
 Metadata

 		
 Validating the submission

 		
 Uploading the submission

 		
 Development

 		
 Contributing

 		
 Getting setup

 		
 Getting help

 		
 Formatting

 		
 Buiding the docs

 		
 Gotchas

 		
 Docstring style

 		
 Releasing

 		
 First step

 		
 PyPI

 		
 Push to repository

 		
 Conda

 		
 Why is there a Makefile in a pure Python repository?

 		
 Why did we choose a BSD 2-Clause License?

 		
 Assessed Ranges API

 		
 Command-line interface

 		
 rcmip

 		
 download

 		
 upload

 		
 validate

 		
 Database API

 		
 Errors API

 		
 IO API

 		
 Metric Calculations API

 		
 Plotting API

 		
 Stats API

 		
 Validate API

 		
 Changelog

 		
 master

 		
 v0.4.1 - 2020-09-14

 		
 Fixed

 		
 v0.4.0 - 2020-09-13

 		
 Added

 		
 Changed

 		
 Removed

 		
 v0.3.0 - 2020-09-02

 		
 Added

 		
 Changed

 		
 v0.2.1 - 2020-09-01

 		
 Added

 		
 v0.2.0 - 2020-08-17

 		
 Added

 		
 Changed

 		
 v0.1.1 - 2020-07-09

 		
 Changed

 		
 v0.1.0 - 2020-07-09

 		
 Added

_static/plus.png

